Assignment - IV
 MATHEMATICS - III
 SEMESTER-IV (CS/IT), Paper Code: M401

Advanced Graph Theory

1) Draw the dual of the graph.

2) If G be a connected graph with n vertices, e edges and r faces, prove that $n-e+r=2$
3) A regular graph G determines 8 regions, degree of each vertex being 3 . Find the number of vertices of G.
4) Define planar graph. Construct a planar graph with 6 vertices.
5) Prove that a planar graph with n vertices, e number of edges and k number of components, determines f number of regions, where $f=e-n+k+1$.
6) Prove that the chromatic polynomial of a tree with n vertices is $x(x-1)^{n-1}$, whose x is the no. of colours.
7) Show that every planar graph is 6 colourable.
8) Find the chromatic number of the following graph

9) Prove that a graph G is 2-chromatic if and only if it is bi-partile.
